LiteRT / TFLite

LiteRT, formerly known as TensorFlow Lite, is Google's high-performance runtime for on-device AI. You can run existing quantized LiteRT models (in Python or C++) on the NPU on Dragonwing devices with a single line of code using the LiteRT delegates that are part of AI Engine Direct.

Quantizing models

The NPU only supports uint8/int8 quantized models. Unsupported models, or unsupported layers will be automatically moved back to the CPU. You can use quantization-aware training or post-training quantization to quantize your LiteRT models. Make sure you follow the steps for "Full integer quantization".

Don't want to quantize yourself? You can download a range of pre-quantized models from Qualcomm AI Hub, or use Edge Impulse to quantize new or existing models.

Running a model on the NPU (Python)

To offload a model to the NPU, you just need to load the LiteRT delegate; and pass it into the interpreter. E.g.:

from ai_edge_litert.interpreter import Interpreter, load_delegate

qnn_delegate = load_delegate("libQnnTFLiteDelegate.so", options={"backend_type": "htp"})
interpreter = Interpreter(
    model_path=...,
    experimental_delegates=[qnn_delegate]
)

Running a model on the NPU (C++)

To offload a model to the NPU, you'll first need to add the following compile flags:

CFLAGS += -I${QNN_SDK_ROOT}/include
LDFLAGS += -L${QNN_SDK_ROOT}/lib/aarch64-ubuntu-gcc9.4 -lQnnTFLiteDelegate

Then, you instantiate the LiteRT delegate and pass it to the LiteRT interpreter:

// == Includes ==
#include "QNN/TFLiteDelegate/QnnTFLiteDelegate.h"

// == Application code ==

// Get your interpreter...
tflite::Interpreter *interpreter = ...;

// Create QNN Delegate options structure.
TfLiteQnnDelegateOptions options = TfLiteQnnDelegateOptionsDefault();

// Set the mandatory backend_type option. All other options have default values.
options.backend_type = kHtpBackend;

// Instantiate delegate. Must not be freed until interpreter is freed.
TfLiteDelegate* delegate = TfLiteQnnDelegateCreate(&options);

TfLiteStatus status = interpreter->ModifyGraphWithDelegate(delegate);
// Check that status == kTfLiteOk

Example: Vision Transformers (Python)

Here's how you can run a Vision Transformer model (downloaded from AI Hub) on both the CPU and the NPU using the LiteRT delegates.

Open the terminal on your development board, or an ssh session to your development board, and:

  1. Create a new venv, and install the LiteRT runtime and Pillow:

    mkdir -p litert-demo/
    cd litert-demo/
    
    python3 -m venv .venv
    source .venv/bin/activate
    pip3 install ai-edge-litert==1.3.0 Pillow
  2. Create inference_vit.py and add:

    import numpy as np
    from ai_edge_litert.interpreter import Interpreter, load_delegate
    from PIL import Image
    import os, time, sys
    import urllib.request
    
    def curr_ms():
        return round(time.time() * 1000)
    
    use_npu = True if len(sys.argv) >= 2 and sys.argv[1] == '--use-npu' else False
    
    # Path to your quantized TFLite model and test image (will be download automatically)
    MODEL_PATH = "vit-vit-w8a8.tflite"
    IMAGE_PATH = "boa-constrictor.jpg"
    LABELS_PATH = "vit-vit-labels.txt"
    
    if not os.path.exists(MODEL_PATH):
        print("Downloading model...")
        model_url = 'https://cdn.edgeimpulse.com/qc-ai-docs/models/vit-vit-w8a8.tflite'
        urllib.request.urlretrieve(model_url, MODEL_PATH)
    
    if not os.path.exists(LABELS_PATH):
        print("Downloading labels...")
        labels_url = 'https://cdn.edgeimpulse.com/qc-ai-docs/models/vit-vit-labels.txt'
        urllib.request.urlretrieve(labels_url, LABELS_PATH)
    
    if not os.path.exists(IMAGE_PATH):
        print("Downloading image...")
        image_url = 'https://cdn.edgeimpulse.com/qc-ai-docs/examples/boa-constrictor.jpg'
        urllib.request.urlretrieve(image_url, IMAGE_PATH)
    
    with open(LABELS_PATH, 'r') as f:
        labels = [line for line in f.read().splitlines() if line.strip()]
    
    experimental_delegates = []
    if use_npu:
        experimental_delegates = [load_delegate("libQnnTFLiteDelegate.so", options={"backend_type": "htp"})]
    
    # Load TFLite model and allocate tensors
    interpreter = Interpreter(
        model_path=MODEL_PATH,
        experimental_delegates=experimental_delegates
    )
    interpreter.allocate_tensors()
    
    # Get input and output tensor details
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()
    
    # Load and preprocess image
    def load_image(path, input_shape):
        # Expected input shape: [1, height, width, channels]
        _, height, width, channels = input_shape
    
        img = Image.open(path).convert("RGB").resize((width, height))
        img_np = np.array(img, dtype=np.uint8)  # quantized models expect uint8
        img_np = np.expand_dims(img_np, axis=0)
        return img_np
    
    input_shape = input_details[0]['shape']
    input_data = load_image(IMAGE_PATH, input_shape)
    
    # Set tensor and run inference
    interpreter.set_tensor(input_details[0]['index'], input_data)
    
    # Run once to warmup
    interpreter.invoke()
    
    # Then run 10x
    start = curr_ms()
    for i in range(0, 10):
        interpreter.invoke()
    end = curr_ms()
    
    # Get prediction
    q_output = interpreter.get_tensor(output_details[0]['index'])
    scale, zero_point = output_details[0]['quantization']
    f_output = (q_output.astype(np.float32) - zero_point) * scale
    
    # Image classification models in AI Hub miss a Softmax() layer at the end of the model, so add it manually
    def softmax(x, axis=-1):
        # subtract max for numerical stability
        x_max = np.max(x, axis=axis, keepdims=True)
        e_x = np.exp(x - x_max)
        return e_x / np.sum(e_x, axis=axis, keepdims=True)
    
    # show top-5 predictions
    scores = softmax(f_output[0])
    top_k = scores.argsort()[-5:][::-1]
    print("\nTop-5 predictions:")
    for i in top_k:
        print(f"Class {labels[i]}: score={scores[i]}")
    
    print('')
    print(f'Inference took (on average): {(end - start) / 10}ms. per image')
  3. Run the model on the CPU:

    python3 inference_vit.py
    
    # INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
    #
    # Top-5 predictions:
    # Class boa constrictor: score=0.6264431476593018
    # Class rock python: score=0.047579940408468246
    # Class night snake: score=0.006721484009176493
    # Class mouse: score=0.0022421202156692743
    # Class pick: score=0.001942973816767335
    #
    # Inference took (on average): 391.1ms. per image
  4. Run the model on the NPU:

    python3 inference_vit.py --use-npu
    
    # INFO: TfLiteQnnDelegate delegate: 1382 nodes delegated out of 1633 nodes with 27 partitions.
    #
    # INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
    #
    # Top-5 predictions:
    # Class boa constrictor: score=0.6113042235374451
    # Class rock python: score=0.038359832018613815
    # Class night snake: score=0.011630792170763016
    # Class mouse: score=0.002294909441843629
    # Class lens cap: score=0.0018960189772769809
    #
    # Inference took (on average): 132.7ms. per image

As you can see this model runs significantly faster on NPU - but there's a slight change in the output of the model. You can also see that for this model not all layers can run on NPU ("1382 nodes delegated out of 1633 nodes with 27 partitions").

Last updated